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Ahstruct - Proposed  missions to explore  comets  and 
moons  will  encounter  environments  that  are  hostile  and 
unpredictable.  Any  successful  explorer  must be able  to 
adapt to a wide  range of possible  operating  conditions in 
order to survive.  The  traditional  approach of construct- 
ing special-purpose  control  methods  would  require a in- 
formation  about  the  environment,  which  is  not  available 
a  priori  for  these  missions.  An  alternate  approach is to 
utilize  a  general  control  approach  with  significant  capa- 
bility to  adapt  its  behavior, a so called adaptive  problem- 
solvir~g methodology.  Using  adaptive  problem-solving, 
a  spacecraft  can  use  reinforcement  learning to adapt 
an environment-specific  search  strategy  given the craft's 
general  problem  solver  with a flexible  control  architec- 
ture. The  resulting  methods  would  enable the spacecraft 
increase its performance  with  respect  to  probability of 
survival  and  mission  goals.  We  discuss an application 
o f  this  approach to learn control  strategies in planning 
and scheduling  for  three  space  mission  models:  Space 
Technologies  4, a Mars  Rover.  and  Earth  Observer  One. 

TABLE OF CONTENTS 

INTRODUCTION 
Proposed  missions to explore  comets  and moons will en- 
counter  environments  that  are  hostile  and  unpredictable.  Be- 
cause of light-time  communication  delays,  these  missions re- 
quire an autonomous  explorer  that  can  adapt to handle  pos- 
sible  environments. For autonomous  planning  systems,  the 
high-level  actions  of  the  spacecraft  must  be  planned  with  suf- 
ficient environmental  information to  ensure  that  the  resulting 
plans  are  admissible.  Generic  control  methods  will not ac- 
count  for  domain-specific  features  when  operating  a  space- 
craft.  The  spacecraft  could  easily be lost based  on  inappro- 
priate  behavior  for  the  particular  environment  due to overly- 
generic  control  methods [8]. 
On  the  other  hand, developing  and  testing  domain-specific 
control  methods is extremely  difficult,  and  requires  support 
of a domain  expert.  Moreover,  the  domain  expert  must  have 
knowledge  about  the  environment i n  which  the  spacecraft is 
operating. which is  not available  before  the  spacecraft  arrives 
at  the  location to explore. If experts  are not available,  the 
spacecraft  must  be  able to automatically  adapt a flexible  con- 
trol structure  specific to the  new environment. 
Aduptivc  problem  solving addresses  these  problems by en- 
abling  the  development  and  maintenance of effective  control 
strategies  without  extensive  domain-specific  knowledge. An 
adaptive  problem  solver is given: ( I )  a generic  set of con- 
trol strategies  and (2) a tlexible  control  architecture,  and  uses 
a  statistical  method to estimate  the  quality of each  control 
strategy or generate a morc  appropriate  strategy.  Adaptive 
problem  solving  also  provides  hard  statistical  guarantees on 
the  quality of the  bchavior for each  adapted  control  method. 
Using  adaptive  problem  solving  techniques.  spacecraft  explo- 
ration in unknown  environments  becomes  feasible. 
In this paper,  we  describe  how  adaptive  problem  solving  can 
be used t o  adapt the  control  methods of a  spacecraft  in- 
situ  without  relying on domain  expertise.  The  value of this 
method is empirically  shown in the  context of three  space- 
craft  operations  scheduling  problems in a  generic  planning 
and scheduling  environment. By adapting  control  strategies 
for  each  domain, the  lifespan  of  the  spacecraft is improved 
since the xlaptivc problem solver can increase  chances of 
spacccrnl't  survival  and continue to update  thc  control  meth- 
ods based on agins hardware o r  environmental  changes. 

b l o t I v a m n ; ~ l  Examplc 
'I%c cornel  lundcr will I ; u n d  on ;I surI;lcc 01'  unknown clcnsity. 
with the gods  01. drilling  into  the  comet 90%) and  Irnnging 
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\ ~ ~ l ~ ~ r o u m l ~ ~ 1 g ~  LO'%, o 1  lllc [ I I ~ C  allocated t o  :lccon~plid1lng 
\ I w  !?{1:tl\. bl;lny sltualicms will Force rhcse  pcrccntagcs t o  he 
,~cl:\p[cd. Onc sccnarlo Inlgtlt bc t h a t  the surface 0 1 '  the comct 
I S  much (lcmwr Ihall expcctecl. so the  rate of drilling is de- 
C I . C ; W ~  x l d  tllc \ v e x  on the clrlll is incrcasccl. The Ianclcr 
1111ght dccdc  t o  adjust its prtoritics t o  taking  more  images 
instcd o f '  clrilling. Another  scenario might be that drilling 
cxlsccl a layer ol'dust on the surlace t o  drift  up,  the  dust  might 
l i n l l t  the visilJtllty of the lander.  Taking  images  might be inef- 
I'cctivc, so the  lander  would  optimally  delay its drilling  activ- 
ities un t i l  the  dust  settled,  or  put  off  taking  images  altogether. 
Failure to adapt to these  situations  could  cost the  lander the 
rnission. by depleting  resources  too  rapidly, not accomplish- 
ing  mission  objectives.  or  wearing  out  equipment.  Not a 1 1  
possible  situations  can be enumerated  before the  mission; in- 
stead an adaptive  problem  solver  checks the  current  control 
strategy's  performance in the  given environment and  responds 
to changes by adapting the  control  strategy,  independent of 
the c u s e  of  the change. An adaptive  problem  solver would 
continually  adapt  the  control  strategy if it found  the  current 
strategy  non-optimal. 

MOTIVATION  FOR ADAPTIVE  PROBLEM  SOLVING 
Selecting an effective  control  strategy in a  specific  domain 
from a set is difficult  without  information  about  how  the 
strategies  perform  over a distribution of tasks in that domain. 
Although  there  exist  classes  of  heuristics  that  are  intended to 
he suitable  lor a l l  planning  domains,  some  amount of effi- 
ciency is sacrificed in generalizing  the  heuristics by failing t o  
take advantage of the  specific  domain  structure [SI. On  the 
other  hund,  determining  how  each  heuristic  or  set of heuris- 
tics perfortns in a problem  domain  can be  costly. 
Adaptive  problem  solving  attempts  to  estimate  the  perfor- 
mance of each  strategy in a given  domain by collecting  sam- 
ples of the strategy's  performance  over  the  problem  distribu- 
tion.  The  control  strategies  are  represented  as  sets of  heuris- 
tics so that they  may  be  robust enough to perform  well  over 
the entire  problem  distribution even  when  they  are  slightly 
suboptimal,  as  opposed to a single  heuristic  which  may  not 
be as flexible. Some  amount of generality is beneficial  when 
clomains are not  known u priori. the  domain  structure  changes 
rapidly. o r  a  domain  expert is not available  and a complete 
strategy  domain  search is not  possible. 

PLANNING  SYSTEM 
The  planning  and  scheduling  system with a flexible  control 
architecture used to evaluate the  control  strategies  for  each 
model is a version of the  ASPEN  (Automated  Scheduling 
ancl Planning  ENvironment)  system [4]. ASPEN is a con- 
tigurable,  generic  planning/scheduling  application  framework 
that can  be  tailored to specitic  domains to create  conflict-free 
plans o r  schedules. 
ASPEN employs  planning  and  scheduling  techniques t o  au- 
tomaticnlly generate a necessary  activity  sequence to achieve 
tllc Input goals.  Thls  sequence is produced by utilizing an 
irctxtivc repair :llgorithrn [ 181 which  classifies  conflicts  and 
aklcks  thcm  cach  individually.  Conflicts  occur  when a plan 
collslralnt has been  violated  where  this  constraint  could be 
temporal or  involve ;I resource.  state or activity  parameter. 
C'onllicts ;Ire resolved by performing  one or more  schedule 
rnodifications  such as moving,  adding, o r  deleting  activities 

Figure I : Hypothesis  Generation  Diagram 

at a point in  the  search  where  a  choice  can be made by the 
scheduler,  called  a  choice  point. The target of the  repair  mod- 
ification is chosen by a heuristic  method. For each  type of 
choice  point,  there  exists  a  different  set  of  heuristic  methods 
to use in repair  which  can  be  modified  easily. 
The quality of a  resulting  schedule  generated by ASPEN  is 
measured by a set of  preferences  specified  by  the  user.  This 
set of preferences  specifies  the  quality  functions  associated 
with  certain  metrics in the  schedule,  such as battery  power 
usage or  number  of  science  goals  achieved,  and  the  possible 
cutoffs of the  metric  values.  Although  currently  the  ASPEN 
system  does not take  preferences  into  account  while it per- 
forms iterative repair, this is a  possible  addition to the  heuris- 
tics in future  work. 

GENERATING  CONTROL  STRATEGIES 

Control  strategies  can  be  generated  using  search  techniques 
and  evaluated  using  adaptive  problem  solving.  Given  a set 
of control  strategies,  the  adaptive  problem  solver  selects  the 
top  strategy  or  strategies  based  on  estimations of their  quality 
parameters,  and  returns  them to the  search  algorithm. The 
search  algorithm  produces  the  subsequent  set of hypotheses 
using  algorithm-specific  techniques. The new set of strategies 
is passed to the  adaptive  problem  solver  for  evaluation.  This 
cycle  continues until a  certain  amount of time  has  passed  or 
another  stopping  criterion of the  specific  search  algorithtn  has 
been  met (see tigure I ) .  

ADAPTIVE  PROBLEM  SOLVlNG 

The  adaptive  problem  solver  attempts to select  the  top  strate- 
gies  from a set  ofstrategies,  supplied by the  search  algorithm, 
whose  quality is a  function of unknown  environmental  pa- 
rameters. It makes  estimates of the parameters for utility 
of a strategy  and  cost of a sample in  order to achieve  a  re- 
quested  accuracy  for a statistical  decision  requirement,  which 
is a function of the  accuracy of each  pair-wise  comparison of 
set  members.  The  adaptive  problem  solver  iteratively  refines 
the utility and  cost  parameter  estimates by acquiring  training 
examples at the  estimated  cost for each  strategy  (see  figure 2). 
The normal  par:metric  model for  reasoning  about  statistical 
error is L I S C ~  i n  this analysis,  which  assumes  that  the  differ- 
ence  between  the  expected utility and estimated ut i l i ty  of a 
hypothesis  can be accurately  approximated by a normal  dis- 
tribution.  This  assumption is grounded in the  Central  Limit 
Theorem  and is further  discussed in  [2]. The  analysis  would 
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Figure 2: Adaptive Problem Solving  Diagram 

change  given  a  different  parametric  model, but  the  results 
should  be  analogous  for  conventional  models. 
Since  paranleter  estimates  are refined  by random  sampling, i t  
is impossible to place  perfect  accuracy  requirements  on  the 
selection  algorithms.  In  practice,  probabilistic  requirements, 
or decision  criteria, on the  relative  accuracy of the  parameter 
estimates  (and  subsequent  strategy  selection)  are  chosen  as 
parameterized  forms  that  allow  a  tradeoff  between  accuracy 
and  cost. 
Specifically.  decision  requirements  take  a  set of hypotheses 
and  a  probabilistic  error  bound,  and  terminate when one of the 
hypotheses  can  be  shown to have  the  greatest  mean,  evaluated 
through  pair-wise  comparisons,  with a confidence  specified 
by the  given  error  bound.  The  overall  error  for  selection is a 
function  of  the  error of each  pair-wise  comparison.  Rational 
analysis  can  be  used to allocate  error  to  each  pairwise  com- 
parison in such  a way as to attempt  to  optimize the  resource 
usage  necessary  to  acquire  a  sufficient  number of samples to 
achieve  the  decision  requirement. 
In this analysis, the decision  requirement that is used in the 
adaptive  problem  solver is the  probably  approximately  correct 
(PAC) requirement.  The  approach of  using  adaptive  solving 
with  rational  analysis t o  evaluate  strategies  has a natural  cor- 
respondence in other  decision  requirements,  and  the  choice 
of using PAC in this  analysis is mostly  based  on  their  preva- 
lence  rather  than  specific  attributes  of  the  requirements  them- 
selves. An alternative  decision  requirement,  the  expected loss 
requirement,  was  evaluated  compared  with  the PAC require- 
ment  and  found t o  have  minimal  impact on the  outcome. 

PAC Rryuirement 

I n  order to satisfy  the PAC requirement,  the  hypothesis  esti- 
muted to be the  best  must be within  some  user-specified  con- 
stant t distance of the true  best hypothesis with  probability 
1 - h .  The  sum of the crror  from  each  pair-wise  compari- 
son is bounded by this  probability.  Lct Hsel be the expccted 
utility of  the sclected  hypotheses nncl Hi be the  expected util- 
ity I'or the remaining  hypotheses.  Let f i  be  the estimate 01' 
the expected ut i l i ty  o f  a hypothesis. I t  is sul'ficient to bound 
the  probability ofcrror i n  selection For pair-wise  comparisons 
with  the following  equation: 

'l'hus tllc prohIcn1 01. bounding  the  ovcrall  crror  reduces to 
bouncling the crror 0 1 .  euch I;  - 1 comparisons of  the chosen 
best hypothesis t o  the rest 01' the hypotheses. 
The nornlality  assumption  reduces equation I to a  l'unctlon 
of the  parameter  estimates,  the  number of examples n, used 
t o  refine  the estimates, the closeness  parameter E ,  and a n  un- 
known  variance  term a'. Thc  two  stopping  criteria  for  selec- 
tion are cfomirzancc~, which is based on achieving  a  probability 
(d) through  sampling that hi will  perform  better  on a specific 
problem  than h,, and indifference, which is the  probability 
that the  difference  between  performances  will fall within E 
of 0. For  the rest of this discussion, E is ignored to simplify 
understanding.  The  equation  for the  probability of incorrect 
selection  for a pair-wise  comparison, ai, is: 

We can  use this relationship to determine  how  many  train- 
ing  examples to allocate to each  comparison,  given  the  error 
bound  on  the  probability of a  mistake, ~111 estimate of the  dif- 
ference in expected utility, and  an estimate of the variance of 
each  hypothesis: 

Rational Anulwis 
The  hypothesis  selection  algorithm  as  presented  does not  take 
advantage of  unequal  distribution  of  error.  By  distributing 
error  unequally  across  the  pair-wise  comparisons  using  the 
estimates of the cost and utility parameters, we  can  attempt 
to satisfy  the  requirements  using  the  minimum  possible  cost. 
The  general idea 01' rational analysis is to choose  the  error ai 
for  each  comparison t o  minimize.  subject  to  the  given clcci- 
sion  requirements: 

k - l  

z= 1 

The  algorithm must  only ensure that  the sum of  the  errors 
remains less thnn the  given bound. If one  pair-wise  compari- 
son  requires  many  more  samples to achieve the same  amount 
of  accuracy as runother pair-wise  comparison, then i f  the first 
comparison is dlowed to have  more error  and  the  second is 
allowed  less,  the  overull  cost  of  achieving  those  local  require- 
ments  might be reduced. I n  practice,  this  method  significantly 
reduces the number of sarnples  necessary to achieve the re- 
quirement I'or certain  domains, as shown in I I I .  

GENERATING HYPOTHESES 
In  orclcr t o  search  thc  spucc  of  hypotheses, scxch  algorithms 
arc used to generate  hypotheses  and  search  the  hypothesis do- 
main I'or the highest scoring,  or  the  set o f  highest  scoring, hy- 
potheses. At euch lcvcl ol'scarch, an adaptive  problem  solving 
algorithm is used t o  evaluate  thc  competing  hypotheses  with a 



Figure 3: Hypothesis  Vector Diagram 

given confidence  bound. We assume that  time is aconstrained 
rcsot~rcc ;IS 111 [7 ,  31, so the  search  algorithms  should  limit  the 
number o f  search  levels,  while  at  the  same  time  allowing  non- 
optimal  choices so that  the  search  will  cover  areas  that  could 
not  be reached  through  simple  hill-climbing. 

Local Beclrn Search 

The tirst algorithm  that is used to generate  and  search  over 
hypotheses is local  beam  search [ 1 I]. In a flexible  plan- 
ning  and scheduling  domain,  each  hypothesis,  or  combination 
01' heuristics.  can  be  represented  as  a  vector of percentages 
where  the percentages of  heuristics  associated  with a certain 
typc o t  choice  point in ASPEN  sum to 100% (see  figure 3). 
.A random  hcuristic is included  for  each  plan  problem. The 
hasic algorithm is included  below. 
We chose a neighborhood o f a  vector to be  defined as, for  each 
subsct of heuristics  associated  with a certain  choice  point, 
chnnpinz  one  of the usage  percentages by a certain  range,  and 
scaling a l l  of the  other  usage  percentages  equal  amounts so 
that the sum is still 100% (see  figure 3). Let I be  the  bound 
on the number of hypotheses the adaptive  problem  solver  can 
cvaluate. 

Hill Climbing (initial set c fhyo theses )  

BJhi i e ( tinwRernuins ) 

Se l ec t   t op  z hypotheses   using PAC wi th  
confidence c .  

Create   h igher   scor ing   successors  of 
t o p  b hypotheses,   where  successors are  
genera ted   in   the   ne ighborhood of 
o r ig ina l   hypo thes i s .  

E r. d 

(;c/rc,tic. A l ~ y o r i t h t ~  

'rhc scconcl algorithm that is used to learn  hypotheses is a 
gcnct~c  algorithm 151. Each  hypothesis is represented as a 
vcctor 0 1 '  percentages, as in  the  local  beam  search. The three 
general  operators  (crossover,  mutation,  and  reproduction)  are 
used t o  generate the  next  set  of  hypotheses to search  over, 

rxlking  the  hypotheses is done  using  adaptive  problem 
w l v ~ n g .  'The crossover  operator is not  aware of the  different 
w l x c t h  0 1  hcuristics,  and Inny choose t o  split  within one of 
~hohc subsets. Mutation also works  without  knowledge of the 
collstralnl khat subsets  must sum to loo%, so each  subset is 

scalccl t o  I O 0  unil'ormly d tc r  the  iuutation operator is run. 
The basic  ;IIgorithm is shown  below. 

Genetic Algorithm (illitid .srt  ~ ) ~ t l ~ / ~ / ) f l l ~ l . s ~ . s ~  
While (timeRerncrins) 
Rank z hypotheses  using  adaptive  problem 
solving  with  Confidence c 
Store  out   hypothesis   with  highest   score .  

Se lec t   paren ts  from wi th in   h ighes t  
ranked t wi th   p robab i l i t y  ptop 
"Reproduce"  using  crossover  with 
p r o b a b i l i t y  pcross or   r ep roduc t ion   w i th  
p r o b a b i l i t y  (1  - pcross) 
Mutate   o f fspr ing   wi th   p robabi l i ty  
pmutation 
End 

Search Considerations 
In the  context of this paper,  both  algorithms  start  the  search 
with a set of human  expert  derived  strategies  that  are  currently 
in use in the  domain  model. 
Both  of  these  search  techniques  can be used  for  strict  hill- 
climbing in the  search  space.  But  strict  hill-climbing  will 
limit  the amount of space that is searched by restricting  itself 
to a local  maximum.  Locally  non-optimal  steps  are  added  to 
the  search to possibly  expand  the  breadth  of  the search. 
There  are many  ways to allow  locally  non-optimal  choices  to 
be made  during  the  search.  One  way is to allow  the  search al- 
gorithm to choose a hypothesis  to  propagate  that  scores  worse 
than  the  hypotheses in the  beam.  Another  way  is to set  the 
confidence  bound in the  adaptive  problem  solver's  decision 
requirement  low  enough that it might  include an incorrect  hy- 
pothesis in  its selection.  This  second  method  has  the  added 
benefit of decreasing  the  time  associated  with  evaluating  the 
hypotheses in practice.  Both of these  methods  have  the  effect 
of including  non-optimal  steps into  the  search. 
If a strict  upper  bound  exists  for  time,  and  non-optimal 
choices are  allowed,  both of these  algorithms  can be imple- 
mented as anytime  algorithms. The top  ranking  algorithms 
can be saved  at  each iteration of the  search. 
Although  adaptive  problem  solving  approximates  the  score, 
the  ranking of each  hypothesis  on  one  search  level is based 
on  acquiring  enough  information  about  the  performance  of  an 
hypothesis so that the  ranking  can be estimated  within a re- 
quired  degree of accuracy for the  pair-wise  comparisons.  This 
does not ensure that the set  of  hypotheses  with  the  highest 
scores arc  ranked  correctly,  because  their score is an  approxi- 
mation  based on an  error  requirement  that  could  be  high. The 
set of top scoring  hypotheses  must be evaluated  with a high 
confidence level before  the  absolute  best can be selected. 
Attributes of these  two  different search  algorithms  allow  them 
to perform in different ways to provide  insight into character- 
istics of the  search  space.  Whereas the propagation  of a vec- 
tor in local beam  search  ignores  potential  dependencies  be- 
tween  diflerent  subsets of heuristics,  the  crossover  operation 
in genetic  algorithms  tends to propagate  subsets  of  the  string 
bascd on  thc  distance  hetween  individual  values in the  vector, 



hIlo\iII ; I \  tile St1bsct's ( / C / U I ; / / ~ ~  / c , / / , q [ h  151.' Unscd 0 1 1  wI~crc 
I I I C   Y I I I I L I C I S  I'or heuristics 01' dil'fcren~ types :~rc Ioc;~tccI i n  the 
vcc~or. tllc gcllclic ;dgorithnl may or may  not reproduce t l u m  
< I \  ;I  x [ .  l ;or this rcason.  genetic  algorithms may be superior 
t o  IOC:II  hc;llu searches for domains  where the  influences 0 1 '  
tlil'l'crcnt heuristic  types  arc  dependent. 

METHOD  IMPLEMENTATION 
A n  adaptive  control  system ofthis  type  can  be  used in mis- 
sion  operations in multiple  capacities. It can be used  from 
the s tx t  to design  the  spacecraft  constraints  and  payload, by 
evaluating  each of the  potential  designs  against  possible  envi- 
ronments :u~d comparing  results.  The  system  can be used  on 
the ground t o  perform  mission  planning  and  during flight to 
quickly  develop  new  schedules  based  on  changing  domains 
or  spacecraft  deterioration. The system  might be used  on- 
board a spacecraft to perform  real-time  fault  detection  and 
recovery.  Environmental  constraints  for  the  spacecraft,  such 
as the  density  or  temperature of the  surface for a  lander,  can 
be determined  when  they  are  available  to  the  spacecraft.  Ac- 
curate  constraints  are  required  for  operation of a spacecraft in 
an unknown  environment  regardless of whether an  automated 
planner is on-board  the  craft.  These  constraints  can be  used 
to update  the  on-board or ground-based  model of  the environ- 
ment, and adaptive  problem  solving can  be  used to efficiently 
determine the optimal  planning  heuristics  for  the  current en- 
vironment. 

EMPIRICAL EVALUATION 
We claim  that  hypothesis  generation  can  efficiently find a bet- 
ter set of hypotheses to produce  high  quality  solutions in a 
given domain than an  existing  set,  using  adaptive  problem 
solving to evaluate  the  performance  of  each  hypothesis. In 
this section we provide  evidence  that in practice,  these  meth- 
ods  can  generate  heuristic  sets  superior to those  generated by 
model experts.  Furthermore,  the  generation  methods  are  com- 
pared to evaluate  how they perform  for  each  given  search  do- 
main. 
The test o f  real-world  applicability is based on three  domains 
related to planned  space  missions,  using the ASPEN  planning 
and scheduling  system.  The  original  set of  hypotheses  that is 
used is the set of heuristic  combinations  currently in use in 
these  and  related  models. We hope  this  illustrates  how this 
type  of  method can be  useful i n  real-world  domains, by im- 
proving  on  control  strategies  already i n  use,  improving the 
strategies  during  missions,  or  updating  the  strategies to han- 
cllc domain  shifts. 

Evaluation 
N o w  Millennium  EO-I Domuin - New  Millennium  Earth 
Obscrver 1 (EO-1 J is an earth  imaging  satellite  featuring an 
advanced  multi-spectral  imaging  device.  EO- 1 mission  oper- 
ations  consists o f  managing  spacecraft  operability  constraints 
(powcr,  thcrrnal.  pointing, bul'fers, consumablcs,  tclecommu- 
nIcat1ons, ctc.) and science  goals  (imaging of specilic tar- 
gets  within  particular  observation  parameters). Of particular 
clil'liculty is managing  the  downlinks as the amount o f  data 
generated by the imaging  device is quite large  and  uplink op- 
portunities are a  limited  resource. In addition, because sci- 
cncc targets  lor EO- 1 are based  upon  short-term  cloud  predic- 
tions,  schedules  must  be  generated  daily.  Automated  planning 

would  supply t~ccdcd ;1ssistancc will1 claily scheduling. whtch 
is n o t  li.asihlc with EO- 1's thrcc  person Illission opcr;Ltlolls 

The EO- 1 domain  tnodcls rhc operations o f '  [he EO- I opctx 
lions ('or a  two-day  horizon I 1.1 1 .  I t  consists o f '  I4 resources, 
I O  state  variables  and total of38 different  activity  types. Each 
EO- I problem  instance  includes  a  randomly  gencratccl. lixcd 
protile that represents  typical  weather nnd instrument  pattern. 
Each  problem also includes 3 to 16 randomly  plnccd  instru- 
ment  requests  for  observations  and  calibrations, and between 
SO and 175 communications  satellite  passes. 
The preferences  for  EO-1  include  preferences I'or more cnl- 
ibrations  and  observations,  earlier  start  times  for  the  obser- 
vations,  fewer  solar  array  and  aperture  manipulations.  lower 
maximum  value  over  the  entire  horizon  for  the  solar  array, 
and  higher  levels of propellant. 
Applying the  quantile-quantile (Q-Q) test to the EO-I hy- 
potheses  shows  that  they  are  very  likely  normal  distributions. 
The Q-Q test compares  the  quantiles  of  the  samples  with  a 
normal  distribution,  and  departures in linearity  of  the  result- 
ing  plot  show  how the samples  differ  from a normal  distribu- 
tion.  Results of applying  the Q-Q test to these  three  domains 
is shown in [ I] .  
Figures  4  and 5 show  scores of the  generated  heuristic  com- 
binations  over 35 cycles of the  search  algorithms.  Although 
the curves  for the  scores of the  two  different  search  algorithms 
are  different.  the  percentage of improvement for  the  high  scor- 
ing  hypothesis  within  each  cycle is similar  (128%  for  the  lin- 
ear  search  compared with 147% for the genetic  algorithm). 
The  percentage  improvement  for the mean  score is somewhat 
greater,  161% for  the  genetic algorithm  compared with 116% 
for  the  linear search.  The high scoring  heuristic  combinations 
are  also  somewhat  different:  the local search  hypotheses  use 
a  significantly  lower  percentage  of  random  heuristics  than  the 
genetic  algorithm  hypotheses,  illustrating  two  different  local 
maxima in the  search  space. 
Identical  runs i n  all of  these  domains  using  the  expected loss 
criterion  for the adaptive  problem  solver  yielded  very  simi- 
lar results  using a similar  number of iterations  per  cycle of 
adaptive  problem  solving, so results  using  expected loss re- 
quirements have  been  omitted. 

tcnlu. 

New Millenniwn Spice Technologies I+ur Landed OpeIyI- 
tions Domain- The ST-4 domain  models the  landed oper- 
ations of a  spacecraft  designed  to  land  on a comet and re- 
turn a sample to earth.  This  model has 6 shared  resources. 
6 state  variables,  and  22  activity  types.  Resources  and  states 
includc battery level, bus power,  communications,  orbiter-in- 
view, drill location, drill state,  oven  states  for a primary  and 
backup  oven  state,  camera  state,  and  RAM.  There are two 
activity  groups that correspond to different  types o f  cxperi- 
mcnts:  mining  and  analyzing  a  sample, and taking 21 picture. 
Each S T 4  problem  instance  includes a randomly  generated. 
fixed profile that represents  communications  visibility t o  the 
orbiting  spacecraft.  Each  problem  also  includes  hetwcen 1 
~und I 1  mining activitles and  betwccn I and  24  picture cxper- 
itncnts at random  start  times. 
The preferences for ST-4  include  more  imaging. 111orc min- 
ing, 1110rc battery  power  over the planning horimn. l'cwer c l r i l l  
movements.  and I'cwer uplinks. 
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Figure 4: EO-I model  search  iteration  maximum and average 
score: for 35 itcrations of the local beam  search  (beam = 2), using 
r a t ~ o n a l  PAC as the requirement for the  adaptive  problem  solver. 

Based on the Q-Q test,  hypotheses  from  the  ST-4  domain  are 
likcl!. t o  he  normally  distributed.  and  thus  provides a good 
ntoclel lor adaptive  problem  solving [ I ] .  Graph 6 shows the 
mc;1n and  high scores of the  generated  heuristic  combinations 
o w r  25 cycles 0 1 '  the search  algorithms.  Although the  indif- 
lerence  ratio for the PAC algorithm is three  times  higher  than 
i n  EO- I .  the  score rises significantly  from  the  starting  vector. 
The high score  reaches  a  maximum  improvement of 14%, and 
the  mean score has  a maximum  improvement of 18%. 
Thls d o m a i n  includes an expert-generated  heuristic for choos- 
ing ;I method to resolve  schedule  conflicts in a  manner  appro- 
priate to the DS-4 model.  such  as  moving  activities  as  op- 
posccl t o  deleting  them when a resource  has  been  overcom- 
mlttctl. I t  IS  interesting to note  that  even in the  best set of 
hy1x)thcscs. the nver:lgc ~tsage of this heuristic  was  only 22% 
t o r  ;I choice  point with  only 3 possible  heuristics,  and no hy- 
potheses  with  the  expert  heuristic  usage  over 40% was  ranked 
i n  the  top  third 111 the adaptive  problem  solver's  ranking. 

l<o(A~~-7 Mtrrs Rover. Dowrairr - Rocky-7 is ;I prototype  Mars 
rover for long-range  planetary  science  gathering.  The  rover 
donla in  models  operations of a prototype  rover for a typi- 
c ;~ l  Martian  day I I O ] .  I t  consists of I X shared  resources, 12 
state vurtahles  and 32 activity  typcs.  Resources  and  states in-  
cluck  cameras  (front, rear. mast).  mast,  shovel,  spectrometer, 
solar array,  battery,  and  RAM.  There  are  three activity  types 
111;11 correspond t o  different  types ofscience experiments:  dig- 
;tnF :IC ;I location.  collecting ;I spectrometer  reading from tar- 
,gel. and  takrng image fronl a location  (panorama,  front, 
I U I . I .  Rover problems rue constructed by generating  between 
I L O  I2 cxperitncnts  and  randomly  generating  parameters for 
thc cupcrtnlcnts  (such as target  locations).  Heuristics  include 
trawling  salesman  heuristics which attempt to order  the  rover 
111oves such that the total distanw traveled is minimized. 
l<ocLv-7 prclcrcnccs  lncludc  prclcrcnccs for morc  science  ac- 
tivllica u n t l  cxiicr  start timcs l'or those  activities, less travers- 
111s , \ n d  earlier slart ttmcs for traversals, less battery usnge, 
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Figure 5 :  EO-I model  search  iteration  maximum  and  average 
scores for 35 iterations of the genetic  algorithm search, using  ra- 
tional PAC as the  requirement for the  adaptive  problem  solver. 

fewer  mast  manipulations,  and  less  time  that  the  mast is de- 
ployed  over  the  planning  horizon. 
Graphs 7 show  scores of the  generated  heuristic  combinations 
over 40 cycles of the  search algorithms.  The  graph  describ- 
ing  the  genetic  algorithm  search for the Rocky-7  domain  was 
omitted  because  of its similarity to the  linear  search  graph. 
The  hypotheses in the  Rocky-7  domain  appear  to come  from a 
non-normally  distributed  distribution  compared  to  both EO- 1 
and  ST-4,  as  shown by applying  the Q-Q test  to  the  original 
hypothesis [ 11. The adaptive  problem  solver  decision  require- 
ment  assumes a normal  distribution,  and  the Rocky-7 results 
illustrates  the  problem  with  violating  this  assumption. Vio- 
lating  the  assumption of normality  leads to  evaluations  which 
cannot  provide  strong  statistical  guarantees  as  to  their  accu- 
racy. The  hypothescs for this particular  Rocky-7  problem  ap- 
pear to  be less continuous than  the domain  for EO-I. Over 
a l l  the  search  iterations, the greatest  improvement in the  max 
scores lOl%, and  the  greatest improvement in the  mean  score 
is l O l % ,  although  the  accuracy  of  the  evaluations is not guar- 
anteed  because of the  violated  normality assumption. 
The five heuristics i n  the  set that were  designed  for  the  Rover 
domain by experts,  including  the  multiple  traveling  salesmen 
path  planning  heuristics,  peak  at 45%, 38%, 35%, 34%, and 
9% usage for each of their specific  choice  points,  over all of 
the  top  hypotheses  chosen by the  adaptive  problem  solver. 
This  might  indicate that these  heuristics  should be used in 
moderation  with  this  domain  instance. 

RELATED  WORK 
Evaluating  control  strategies is a growing  research  topic. 
Horvitz  originally  described a method  for  evaluating  algo- 
rithms  based  on  a  cost  versus  quality  tradeoff [71. Russell, 
Subramanian,  and Parr used dynamic  programming to ratio- 
nally select  among a set o f  control  strategies by estimating 
utility (which  includes  cost) [ 121. The MULTI-TAC  system 
considers a l l  k-wise  combinations of heuristics for solving a 
CSP in its cvnluation  which also avoids  problems with  local 
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Figure 6: ST-4 model  maximum  and  average  scores by iteration  for 
30 genetic algorithm generations, using  rational PAC as the  require- 
ment for the adaptive  problem  solver. 

maxima, but at a large  expense to the  search [8]. Fink  de- 
scribes a method  that  sets  time  bounds  for  selection as op- 
posed to parL1meter estimation  accuracy,  since  sampling  time 
is not  large  enough to attempt to minimize  the  number of 
samples 131. Previous  articles  describing  adaptive  problem 
solving have developed  general  methods  have been  developed 
for  transforming  a  standard  problem  solver  into an  adaptive 
one[Gratch & DeJong1992, 61, illustrated  the  application of 
adaptive  problem  solving to real world  scheduling  problems 
[6], and showed  how  adaptive  problem  solving  can be cast as 
a resource  allocation  problem [ I ] .  We expand  on  these  top- 
ics by evaluating  different  methods for generating  hypotheses 
which  can  be  used in adaptive  problem  solving to efficiently 
estimate  their  utility  and  cost,  considered  separately. 

FUTURE WORK 
In the  area  of  adaptive  problem  solving,  additional  work  has 
been  proposed  for  the  stopping  criteria.  which  can be resource 
bounded  (specifically,  time  as  a  resource)  instead of a  relax- 
ation  of the ranking  requirement, as in previous  works on 
similar  topics [ 3 ] .  Difl'crcnt methods of combining  heuris- 
tics could be applied  to  problems  of  this  type.  One  method is 
composite  strategies,  from  operations  research, which  involve 
1ogic:ll decisions  about  the  relative usage of heuristics 21s op- 
posed to statistical  methods.  Another  method is :I portfolio 
approach,  which  combines  heuristics in  a method similar lo 
financial portfolio. 
Current  results do not  indicate  any  direct  benetit to using  ei- 
ther  local  beam search or genetic  algorithms  over the  alter- 
native. In ordcr t o  predict  an  effective  search  algorithm for 
each  environment, it would be useful to generate ;I landscape 
o l '  (he  utilities for the  hypothesis  space [ 161. Previous  work 
has been done in deterministic  landscape  genclation [ 16, 151, 
hut  n o  practical  work  has  been  done i n  stochastic  landscape 
generation,  which is what  this  domain  rcquires. 
More in(clligcnt  methods o l '  searching  over the s p x e  0 1 '  hy-  
pod~cscs could he exploitccl i n  this clotn;\in. I t  is n o t  clear that  
a l l  o t  thc ~noclcl domains xrc continuous. so ;I I'urthcr study o f  
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Figure 7: Rocky-7 model  highest  maximum and search  iteration  av- 
erage  scores  for 40 iterations of the local beam search,  using  rational 
PAC as the  requirement for the adaptive  problem  solver. 

the  shape  of  the  domain  should  precede  the  choice of a  search 
method.  At a lower level, changing  the  mutation  operators 
i n  the  current  algorithms,  such  as  intentionally  weighting  one 
heuristic  heavily out of all of the  heuristics  for a choice  point, 
may  direct  the  search  more  efficiently. 

CONCLUSIONS 
This  paper  outlines  different  methods  for  generating  control 
strategies to use in adaptive  problem  solving,  with  the  goal 
of finding a control  strategy or set of control  strategies that 
performs  well in the  given planning  and  scheduling  environ- 
ment.  The  idea  of  rational  allocation is discussed  along  with 
thc statistical  methods  behind  an  adaptive  problem  solver. 
The purpose is validated in a l l  three  planning  and  scheduling 
domains, by showing  significant  overall  improvement in the 
generated  plans.  Two  hypothesis  generation  techniques  were 
explored  based on the  the amount and  types of improvement 
they allowed. 
Empirically, it appears  that  these  methods  could  be  used in 
a mission  operations  environment to generate  and  evaluate a 
domain-specific  set of heuristics to control  automated  plan- 
ning  and scheduling,  either  on- or  off-board  the  spacecraft. 
These  results are significant in that autonomous  spacecraft 
planning und scheduling is becoming a realistic  option  for 
missions to unknown  environments. 
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